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Abstract

In this paper, conjugate stresses of the Seth±Hill strain measures are treated by means of the de®nition of energy

conjugacy and Hill's principal axis method. This approach results in relations between components of two di�erent
conjugate stress tensors. The results are valid for distinct as well as coalescent principal stretches. Illustrative
examples are solved to demonstrate the simplicity and usefulness of the derived relations between conjugate stress

tensors. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concept of energy conjugacy for stress and strain measures was ®rst introduced by Hill (1968).
This concept plays an important role when writing the internal power of a deforming body. Also the
virtual work, as the weak form of equilibrium equations, can be established in terms of a stress measure
and the variation of its conjugate strain, as a basis for linear and nonlinear analysis of solids and
structures.

A stress measure T is said to be conjugate to a strain measure E if T: ÇE represents power per unit
reference volume, _w: That is

_w � IIIs:D � T: ÇE �1�

where s and D are the Cauchy stress and stretching tensors, respectively, and III � det�U� is the third
invariant of the right stretch tensor U. By the spectral decomposition theorem U can be recast as
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U �
X
i

liNi 
 Ni �2�

where fli g and fNi g are the principal stretches and corresponding orthonormal eigenvectors of U,
respectively.

According to Guo and Man (1992), the Seth±Hill class of strain measure tensors E�m� indexed by
superscript m are de®ned as:

E�m� � 1

m

X
i

ÿ
lmi ÿ 1

�
Ni 
 Ni � 1

m
�Um ÿ I�; if m 6�0

E�0� �
X
i

ln �li �Ni 
 Ni � ln U �3�

where I is the identity tensor. They proposed an explicit formulation for conjugate stress T�m� for jmjr3
considering distinct and coalescent principal stretches. As an example they obtained an explicit
representation of T�ÿ3� in terms of U, T�ÿ1� and their invariants. Also, the stress measure conjugate to
logarithmic strain tensor ln U, which is a well known strain measure in plasticity, was ®rst derived by
Hoger (1987). Following Guo and Man (1992), di�erentiating Eq. (3), the material time derivative of
E�m� and E�ÿm� �m > 0� are obtained as:

ÇE
�m� � 1

m

Xm
r�1

Umÿr ÇUU rÿ1 �4a�

ÇE
�ÿm� � ÿ1

m

Xm
r�1

Urÿm Ç
U ÿ1U

1ÿr
�4b�

where ��� represents the material time derivative. Substituting (4a) into identity

T�1�: ÇE
�1� � T�m�: ÇE

�m� �5�
yields

T�1�: ÇU � 1

m

Xm
r�1

UmÿrT�m�Urÿ1: ÇU �6�

The arbitrariness of ÇU implies that the stress measure tensor T�m� conjugate to E�m� satis®es the tensor
equation

Xm
r�1

UmÿrXUrÿ1 � mT�1� �7�

Analogously, for negative integers ÿm�m > 0�, T�ÿm� conjugate to E�ÿm� satis®es the tensor equation

Xm
r�1

UmÿrXUrÿ1 � mUmÿ1T�ÿ1�Umÿ1 �8�

which di�ers from Eq. (7) only by the right-hand side. Hence, Guo and Man (1992) concluded that the
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crucial point in obtaining an explicit formula for the conjugate stress T�m� or T�ÿm� �m > 0� is to solve
the tensor equationXm

r�1
UmÿrXUrÿ1 � C �9�

where C is a given symmetric tensor.
In this paper, utilizing the Hill's energy conjugacy notion and principal axis method, some useful

relations between di�erent stress measures conjugate to the Seth±Hill strain tensors are derived for m 6�0:
The relations for conjugate stresses are not derived through the solution of Eq. (9) as Guo and Man
(1992) did. The results are valid for distinct and coalescent principal stretches. Finally, some illustrative
examples are solved to show the simplicity and usefulness of the derived relations between conjugate
stress tensors.

2. Preliminaries

Let F denote the deformation gradient at a point of a deforming body. Since det�F� > 0, the polar
decomposition theorem states that F is uniquely decomposed as

F � RU � VR �10�
where U and V are the right and left stretch tensors, respectively. U and V are positive de®nite
symmetric tensors and R is a proper orthogonal tensor.

The eigenvalues of U and V, called principal stretches, are denoted by l1, l2 and l3: The principal
invariants of U and V are

I � l1 � l2 � l3

II � l1l2 � l2l3 � l3l1

III � l1l2l3 �11�
According to Cayley±Hamilton theorem, every tensor satis®es its own characteristic equation. That is,
for the second order tensor U

U3 ÿ I U2 � II Uÿ III I � 0 �12�
Some of the well known strain measures as special cases of Eq. (3) and their conjugate stresses are as
follows (Hill, 1978; Guo and Dubey, 1984):

(i) Green's strain tensor E�2� � 1
2 �U2 ÿ I�: The second Piola±Kirchho� stress tensor;

T�2� � III Fÿ1sFÿT: �13a�
(ii) Almansi strain tensor E�ÿ2�� 1

2�Iÿ Uÿ2�: The weighted convected stress tensor;

T�ÿ2� � III FTsF: �13b�
(iii) Nominal strain tensor E�1� � Uÿ I: The Jaumann stress tensor;
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T�1� � 1

2

ÿ
T�2�U� UT�2�

�
: �13c�

E�1� and T�1� are also called the Biot strain and stress tensors, respectively (Ogden, 1984).
(iv) Logarithmic strain tensor E�0� � ln�U�: The stress measure T�0� conjugate to ln�U� found by Hoger
(1987).

3. The stress measure conjugate to E�n�

In this section a relation is derived to determine the stress measure T�n� conjugate to the strain
measure E�n� de®ned by Eq. (3), in terms of another known stress measure T�m� (m and n are integers).
Consider the identity

T�n�: ÇE
�n� � T�m�: ÇE

�m� �14�
Using (4a) and (6), the above equation results in:

1

n

 Xn
r�1

UnÿrT�n�Urÿ1
!
: ÇU � 1

m

 Xm
r�1

UmÿrT�m�Urÿ1
!
: ÇU �15�

Since ÇU is arbitrary, it is concluded that

1

n

Xn
r�1

UnÿrT�n�Urÿ1 � 1

m

Xm
r�1

UmÿrT�m�Urÿ1 �16�

Using Hill's principal axis method and decomposing the tensors T�n� and T�m� under the principal frame
fNi g of U result in:

T�n� �
X
i,j

T
�n�
ij Ni 
 Nj �17a�

T�m� �
X
i,j

T
�m�
ij Ni 
 Nj �17b�

Substituting (17) into (16), using UnNi � lni Ni, we arrive at

1

n

Xn
r�1

lnÿri T
�n�
ij lrÿ1j � 1

m

Xm
r�1

lmÿri T
�m�
ij lrÿ1j �18�

This leads to the following useful formula

T
�n�
ij �

n

m
T�m�ij

Xm
r�1

lmÿri lrÿ1jXn
r�1

lnÿri lrÿ1j

�19�
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Eq. (19) may be used to calculate T
�n�
ij in terms of T

�m�
ij for distinct and coalescent principal stretches.

However, if the principal stretches are distinct, multiplying the enumerator and denominator of Eq. (19)
by �li ÿ lj � we obtain:

T
�n�
ij �

n

m
T
�m�
ij

lmi ÿ lmj
lni ÿ lnj

; i6�j �20a�

T
�n�
ii � T

�m�
ii lmÿni �20b�

Eq. (20) may be used to obtain the o�-diagonal and diagonal members of T
�n�
ij , respectively.

An analogous procedure is performed to ®nd the stress measure T�ÿn� conjugate to the strain measure
E�ÿn� de®ned by Eq. (3), in terms of another known stress measure T�ÿm� (m and n are positive integers).
Writing the identity

T�ÿn�: ÇE
�ÿn� � T�ÿm�: ÇE

�ÿm� �21�
and using Eq. (4) gives rise to

T�n�:

 
1

n

Xn
r�1

Unÿr ÇUU
rÿ1
!
� T�ÿm�:

 
ÿ1
m

Xm
r�1

Urÿm Ç
U ÿ1U1ÿr

!
�22�

The arbitrariness of overline
Ç

U ÿ1 and use of Eq. (17) for T�ÿm� and T�ÿn� leads to the following
equation:

T
�ÿn�
ij � n

m
T
�ÿm�
ij

Xm
r�1

lrÿmi l1ÿrjXn
r�1

lrÿni l1ÿrj

�23�

Analogous to (19), for distinct principal stretches, (23) can be simpli®ed to:

T
�ÿn�
ij � n

m
T
�ÿm�
ij

lÿmi ÿ lÿmj

lÿni ÿ lÿnj

; i6�j �24a�

T
�ÿn�
ii � T

�ÿm�
ii lÿm�ni �24b�

It is noted that use of ÿm and ÿn instead of m and n in Eq. (20) yields the same results. Deriving a
similar equation for n and ÿm needs some more e�orts. We have

T�n�: ÇE
�n� � T�ÿm�: ÇE

�ÿm� �25�
From Eq. (4) we get

T�n�:

 
1

n

Xn
r�1

Unÿr ÇUU
rÿ1
!
� T�ÿm�:

 
ÿ1
m

Xm
r�1

Urÿm Ç
U ÿ1U1ÿr

!
�26�

Trying to ®nd a suitable expression for
Ç

U ÿ1, we build up the time derivative of UUÿ1 � I: Therefore,
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Ç
U ÿ1 � ÿUÿ1 ÇUU

ÿ1 �27�

Substituting Eq. (27) into (26) results in

T�n�:

 
1

n

Xn
r�1

Unÿr ÇUU
rÿ1
!
� T�ÿm�:

 
1

m

Xm
r�1

Urÿmÿ1 ÇUU
ÿr
!

�28�

or equivalently, 
1

n

Xn
r�1

UnÿrT�n�Urÿ1
!
: ÇU �

 
1

m

Xm
r�1

Urÿmÿ1T�ÿm�Uÿr
!
: ÇU �29�

From the arbitrariness of ÇU and use of Eqs. (17) and (29) we obtain:

1

n

Xn
r�1

lnÿri T
�n�
ij lrÿ1j � 1

m

Xm
r�1

lrÿmÿ1i T
�ÿm�
ij lÿrj �30�

or

T
�n�
ij �

n

m
T
�ÿm�
ij

Xm
r�1

lrÿmÿ1i lÿrjXn
r�1

lnÿri lrÿ1j

�31�

Hence, for distinct principal stretches

T
�n�
ij � ÿ

n

m
T
�ÿm�
ij

lÿmi ÿ lÿmj

lni ÿ lnj
; i6�j �32a�

T
�n�
ii � T

�ÿm�
ii lÿ�m�n�i �32b�

which could be obtained from Eq. (19) by substituting ÿm instead of m.
Therefore, it is concluded that Eq. (20), are the basic equations for writing T

�n�
ij in terms of T

�m�
ij for

positive and negative integers m and n. It is noted that Hill (1978) has introduced general
transformation formulas in this aspect, with which the same result can be derived through di�erent
mathematical manipulation.

Eq. (20) can be written in the form:

h
T
�n�
ij

i
� n

m

2666666664

m

n
T
�m�
11 lmÿn1 Sym:

T
�m�
12

lm1 ÿ lm2
ln1 ÿ ln2

m

n
T
�m�
22 lmÿn2

T
�m�
13

lm1 ÿ lm3
ln1 ÿ ln3

T
�m�
23

lm2 ÿ lm3
ln2 ÿ ln3

m

n
T
�m�
33 lmÿn3

3777777775
�33�

Multiplying Eq. (30) by Ni 
 Nj and summing over i and j gives
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1

n

Xn
r�1

UnÿrT�n�Urÿ1 � 1

m

Xm
r�1

UmÿrT�m�Urÿ1 �34�

Pre- and post-multiplying Eq. (34) by U and Uÿ1 , respectively, and subtracting the result from Eq. (34)
results in

1

n
�UnT�n�Uÿ1 ÿ T�n�Unÿ1 � � 1

m
�UmT�m�Uÿ1 ÿ T�m�Umÿ1 �

and post-multiplying by U gives

1

n
�UnT�n� ÿ T�n�Un� � 1

m
�UmT�m� ÿ T�m�Um� � C1 �35�

According to Eq. (3), we have Un � nE�n� � I . Consequently, from Eq. (35) we obtain:

E�n�T�n� ÿ T�n�E�n� � E�m�T�m� ÿ T�m�E�m� � C2 �36�

It is noted that T�n� can not be obtained from Eq. (35) because C1 is a skew symmetric tensor. Eqs. (35)
and (36) are true for any nonzero integers m and n for both distinct and coalescent principal stretches.

From Eq. (33), the conjugate stress measure T
�n�
ij can be expressed in terms or as a special weighted

form of T
�m�
ij : As a special case, for m � 2, any stress measure T�n� conjugate to its corresponding

member of the Seth±Hill class of strain measures E�n� can be expressed in terms of the second Piola±
Kirchho� stress tensor, T�2�

The following examples illustrate the application of these equations to ®nd the conjugate stresses.
Example 1. Finding T�1�, the Jaumann stress tensor, in terms of T�2� the second Piola±Kirchho� stress

tensor. Substituting n � 1 and m � 2 into Eq. (20) gives rise to

T
�1�
ij �

1

2
T
�2�
ij

l2
i ÿ l2

j

li ÿ lj
� 1

2
T
�2�
ij

ÿ
li � lj

� �37�

Multiplying Eq. (37) by Ni 
 Nj and summing over i and j yields:

T�1� � 1

2

X
i,j

T
�2�
ij

ÿ
li � lj

�
Ni 
 Nj �38a�

or in a basis-free form

T�1� � 1

2

ÿ
T�2�U� UT�2�

�
�38b�

which is the same as (13c).
Example 2. Finding T�ÿ1� in terms of the weighted convected stress tensor, T�ÿ2�: Substituting n � ÿ1

and m � ÿ2 into Eq. (20) results in

T
�ÿ1�
ij � 1

2
T
�2�
ij

lÿ2i ÿ lÿ2j

lÿ1i ÿ lÿ1j

� 1

2
T
�ÿ2�
ij

�
lÿ1i � lÿ1j

�
�39�

Multiplying Eq. (39) by Ni 
 Nj and summing over i and j yields:
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T�ÿ1� � 1

2

X
i,j

T
�ÿ2�
ij

�
lÿ1i � lÿ1j

�
Ni 
 Nj �40a�

or in a basis-free form

T�ÿ1� � 1

2

ÿ
T�ÿ2�Uÿ1 � Uÿ1T�ÿ2�

�
�40b�

Eq. (40b) represents the stress conjugate to E�ÿ1� which is the same relation for T�ÿ1� as cited by Guo
and Man (1992).

Example 3. Finding the relation between T�n� and T�ÿn�: From Eq. (20) we have T
�n�
ij �lni ÿ lnj � �

ÿT
�ÿn�
ij �lÿni ÿlÿnj �: Multiplying both sides by lni l

n
j we get

T
�ÿn�
ij � lni l

n
j T
�n�
ij �41�

Multiplying Eq. (41) by Ni 
 Nj and summing over i and j yields:

T�ÿn� � UnT�n�Un �42a�
or

UÿnT�ÿn� � T�n�Un �42b�
Therefore, it is enough to ®nd the conjugate stresses only for positive integer n and then, from Eq. (42),
®nd the corresponding stresses for ÿn. It is noted that using the Cayley±Hamilton theorem, the order of
U in Eq. (42) may be reduced.

From Eq. (3), we have Un � nE�n� � I: Therefore, from Eq. (42b), the relation between two strain
tensors indexed by n and ÿn, and their conjugate stresses is established asÿ

ÿ nE�ÿn� � I
�
T�ÿn� � T�n�

ÿ
nE�n� � I

�
�43�

Example 4. An alternative method to obtain T�ÿ1�: From Eqs. (38) and (42a) we have

T�ÿ1� � UT�1�U � 1

2
U
ÿ
T�2�U� UT�2�

�
U �44a�

T�2� � Uÿ2T�ÿ2�Uÿ2 �44b�
Substituting Eq. (44b) into (44a) results in

T�ÿ1� � 1

2

ÿ
T�ÿ2�Uÿ1 � Uÿ1T�ÿ2�

�
which is the same as Eq. (40).

4. Conclusions

For positive and negative integers m and n, relations between the components of T�m� and T�n� under
the principal frame of U are derived using Hill's energy conjugacy notion together with Hill's principal
axis method. These relations result in tensor equations between T�m� and T�n�: In consequence, it is
shown that T�ÿn� can be expressed in terms of T�n� and powers of U, which can be reduced to two by
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making use of the Caley±Hamilton theorem. Thus, there is no need to ®nd T�n� for both positive and
negative n.

References

Hill, R., 1968. On constitutive inequalities for simple materials. Int. J. Mech. Phys. Solids 16, 229±242.

Hill, R., 1978. Aspects of invariance in solid mechanics. Advances in Applied Mechanics 18, 1±75.

Guo, Z.H., Dubey, R.N., 1984. Basic aspects of Hill's method in solid mechanics. SM Arch 9, 353±380.

Ogden, R.W., 1984. Nonlinear elastic deformations. Ellis Harwood, Chichester, UK.

Hoger, A., 1987. The stress conjugate to logarithmic strain. International Journal of Solids and Structures 23 (12), 1645±1656.

Guo, Z.H., Man, C.S., 1992. Conjugate stress and tensor equation
Pm

r�1 UmÿrXUrÿ1 � C: International Journal of Solids and

Structures 29 (16), 2063±2076.

K. Farahani, R. Naghdabadi / International Journal of Solids and Structures 37 (2000) 5247±5255 5255


